

Results on Fuzzy δ - Semi Preseparated Sets and Fuzzy Semi δ - Preseparation Axioms
Abstract
The aim of this paper is to introduce the concept of a new kind of sets - called fuzzy δ - semi preseparated sets and is to investigate the properties of this new kind of sets. Also the notion of fuzzy δ - semi preconnectedness is to be introduced. Some of the fundamental properties of the said connectedness is to be studied in fuzzy topological spaces. Lastly fuzzy semi δ - preseparation axioms are to be defined and some of their fundamental properties are also to be investigated in fuzzy setting.
Keywords
References
D. M. Ali and A. K. Srivastava, Fuzzy connectedness, Fuzzy Sets and Systems, 20 (1988) 203 - 208.
K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math. Anal.Appl.82 (1981) 14 - 32.
S. Bin Shahana, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991) 303 - 308.
M. Caldas, S. Jafan and R. K. Saraf, Fuzzy (δ, P) - T1 Topological spaces J. Tri. Math. Soc. 9 (2008) 1- 4.
C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
S. Ganguly and S. Saha, A note on δ - continuity and δ - connected sets in fuzzy set theory, Simon Stevin, 62 (1988) 127 - 141.
S. Ganguly and S. Saha, Separation axioms and separation of connected sets in fuzzy topological spaces. Bull. Cal. Math., 79 (1987) 215 - 225.
S. Ganguly and S. Saha, Separation axioms and Ti - fuzzy continuity, Fuzzy Sets and Systems, 16 (1985) 265 - 275.
B. Ghosh, Semicontinuous and semiclosed mappings and semi connectedness in fuzzy setting, Fuzzy Sets and Systems 35 (1990) 345-355.
B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems, 3 (1980) 90 - 104.
P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore - Smith convergence, J. Math. Anal. Appl., 76 (1980) 571 - 599.
Mukherjee and S. Debnath, On - semiopen seta in Fuzzy Setting, J. Tri. Math. Soc., 8 (2006), 51-54.
Mukherjee and R. Sarkar, On Fuzzy - semi Connectedness and Fuzzy - semi Separation Axioms, Proc. Nat. Sem. On Fuzzy Math. & its appl., Nov. 25-26, 2006; 139 - 144.
Mukherjee and R. Dhar On weakly fuzzy - semi precontinuous mappings and weakly fuzzy - semi preirresolute mappings, The Journal of Fuzzy Mathematics, 18(1) (2010) 209-216.
P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore - Smith convergence, J. Math. Anal. Appl., 76 (1980) 571 - 599.
S. P. Sinha, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems, 45 (1992) 261 - 270.
M. K. Singal and N. Parkash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems, 44 (1991) 273 - 281.
S. S. Thakur and S. S. Singh, On fuzzy semi preopen sets and fuzzy semi precontinuity, Fuzzy Sets and Systems 98 (1998) 383-391.
S. S. Thakur and R. K. Khare, Fuzzy semi δ - preopen sets and fuzzy semi δ - pre continuous mappings, Universitatea din Bacau studii si cerceturi Strintitice Seria Mathematica 14 (2004) 201-211.
S. S. Thakur, Fuzzy semi δ - preconnctedness, Universitatea din Bacau studii si cerceturi Strintitice Seria Mathematica 15 (2005) 161-167.
S. S. Thakur and S. Singh, Fuzzy semi preconnectedness, Proc. Math. Soc. BHU, 12 (1996) 161 - 164.
P. Wuyts and R. Lowen, Separation axioms in fuzzy topological spaces, J. Math. Anal. Appl., 93 (1983) 24 - 41.
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338 - 353.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.