### The Closed Loop Control of Non -Isolated DC-DC Converter Using One Cycle Control

#### Abstract

The conventional DC–DC converters have the disadvantages of operating at high duty-cycle, high switch voltage stress and high diode peak current. Non-isolated high step up converter overcomes this drawback. This converter reduces voltage stress on switch by using clamped-capacitor circuit which is helpful to reduce the conduction losses by using low power rated components and efficiency will increase. Single switch is used in the non-isolated high step up converter, thus reduce the entire cost of the converter. The energy stored in leakage inductance of coupled inductor is efficiently recycled to the output. The voltage doubler circuit is added for further extending the voltage gain. The control strategy is the one cycle control. By the application of this technique the performance of the converter is improved. This non-isolated high step-up converter is used in many applications such as renewable energy system using low voltage energy sources such as fuel cells, solar panels, photo voltaic cell. The leakage inductance energy of coupled inductor is recycled to the output. The simulation of the circuit with 30 V input, 380V output is done using MATLAB.

#### Keywords

#### Full Text:

PDF#### References

M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, “Voltage multiplier cells applied to non-isolated DC–DC converters,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 871–887, Mar. 2008.

H. Kanchev, D. Lu, F. Colas, V. Lazarov, and B. Francois, “Energy management and operational planning of a micro grid with a PV-based active generator for smart grid applications,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4583–4592, Oct. 2011.

Q. Zhao and F. C. Lee, “High-efficiency, high step-upDC–DCconverters,” IEEE Trans.Power Electron., vol. 18, no. 1, pp. 65–73, Jan. 2003.

A. Vaccaro, G. Velotto, and A. F. Zobaa, “A decentralized and cooperative architecture for optimal voltage regulation in smart grids,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4593–4602, Oct. 2011.

L Yan and B Lehman, “An integrated magnetic isolated two-inductor boost converter: Analysis, design and experimentation,” IEEE Trans. Power Electron., vol. 20, no. 2, pp. 332–342, Jan. 2005.

Q Li and PWolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320–1333, May 2008.

A. Reatti, “Low-cost high power-density electronic ballast for automotive HID lamp,” IEEE Trans. Power Electron., vol. 15, no. 2, pp. 361–368, Mar. 2000.

S. S Lee, S. W Choi, and G. O. Moon, “High efficiency active-clamp forward converter with transient current build-up (TCB) ZVS Technique,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 310–318, Feb. 2007.

E. S. da Silva, L. dos Reis Barbosa, J. B. Vieira, L. C. de Freitas, and V. J. Farias, “An improved boost PWM soft-single-switched converter with low voltage and current stresses,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1174–1179, Dec. 2001.

H. S. H. Chung,W. C. Chow, S. Y. R.Hui, and S. T. S. Lee, “Development of a switched-capacitor DC–DC converter with bidirectional power flow,” IEEE Trans. Circuits Syst. I, Fund. Theory Appl., vol. 47, no. 9, pp. 1383– 1389, Sep. 2000.

Zhu, M., Luo, L.: ‘Step-up dc–dc topology construction using a series of output enhanced circuits’, IEEE ICIEA, 2008, pp. 1740–1745.

Tu, W., Qiu, D., Zhang, B., Li, J.: ‘Sneak circuit analysis in n-stage resonant switched capacitor converters’, Proc. IEEE ASID, 2007, pp. 61–65.

Prudente, M., Pfitscher, L.L., Emmendoerfer, G., Romaneli, E.F., Gules, R. ‘Voltage multiplier cells applied to non-isolated DC–DC converters’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 871–887.

Y. R. Novaes, A. Rufer, and I. Barbi, “A new quadratic, three-level, dc/dc converter suitable for fuel cell applications,” in Proc. Power Convers.Conf., Nagoya, Japan, 2007, pp. 601–607.

F. L. Luo, and H. Ye, “Positive output cascade boost converters,” IEE Proc-Electr. Power Application, Vol.151, No 5, pp.590-606, Sept. 2004.

L. H. S. C. Barreto, E. A. A. Coelho, L. C. Freitas, V. J. Farias, and J. B. Vieira, Jr., “An optimal lossless commutation quadratic PWM boost converter,” in Proc. IEEE App. Power Electron. Conf. Expo., Dallas, TX, USA, 2002, vol. 2, pp. 624–629.

L. dos Reis Barborsa, J. B. Vieira, L. C. de Freitas, M da Silva Vilela, V. J. Farias, “A Buck Quadratic PWM Soft-Switching Converter using a Single Active Switch,” IEEE Trans. Power Electr., VOl. 14, No.3, pp.445-453, May 1999.

L. H. S. C. Barreto, E. A. A. Coelho, L. C. Freitas, V. J. Farias, and J. B. Vieira, Jr., “An optimal lossless commutation quadratic PWM boost converter,” in Proc. IEEE App. Power Electron. Conf. Expo., Dallas, TX, USA, 2002, vol. 2, pp. 624–629.

IOINOVICI A: ‘Switched-capacitor power electronics circuits’, IEEE Circuits Syst. Mag., 2001, 1, (4), pp. 37–42

AXELROD B, BERKOVICH Y, IOINOVICI A: ‘Hybrid switchedcapacitor- Cuk/Zeta/Sepic converters in step-up mode’. Proc. IEEE Int. Symp. Circuits and Systems, May 2005, pp. 1310–1313

Luo Fl, Rashid MH: ‘Multiple quadrant operation luo-converters’, IEE proc. Electr. Power appl., 2002, 149, pp. 9–18

Luo Fl, Ye H: ‘Positive output cascade boost converters’, IEE proc. Electr. Power appl., 2004, 151, (5), pp. 590–606

Luo Fl, Ye H: ‘Positive output super-lift converters’, IEE trans. Power electron., 2003, 18, (1), pp. 105–113

Yamamoto I, Matsui K, Matsuo M: ‘A comparison of various dc–dc converters and their application to power factor correction’. Proc. Power conversion conf., april 2002, pp. 128–135

Kayalvizhi R, Natarajan SP, Padmaloshani p: ‘Development of neuro controller for negative output self-lift luo converter’. Proc. Ieee conf. Industrial electronics and applications, may 2006, pp. 517–522

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.