Open Access Open Access  Restricted Access Subscription or Fee Access

Retinal Blood Vessel Segmentation using Phase Congruency Model

Amandeep Kaur, Rakesh Singh

Abstract


Retinal blood vessels are the only part of blood
circulation that can be observed directly. Doctors manually segment retinal images to evaluate the progression of diseases like diabetes and hypertension. The manual tracking is a tedious process. The retinal images have low and uneven contrast with respect to the background. Thus, a robust model is needed for describing the intensity variations for segmenting the vessels. Phase congruency based edge detector using the principal moments is very well adapted to this description. The paper purposes a simple contrast invariant retinal image segmentation using phase congruency model with a good edge localization. Initial results using STARE database (average sensitivity of 0.94, specificity of 0.66 and average accuracy of 0.91) are promising and comparable with other techniques in literature.


Keywords


Retinal Vessel Segmentation, Phase Congruency Model, Illumination Invariant Segmentation

Full Text:

PDF

References


KansKy, Clinical Ophthalmology, Butterworh-Heinmann , London,

S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum,

“Detection of blood vessels in retinal images using two-dimensional

matched filters” , IEEE Trans. Med. Imag., Sep. 1989, vol. 8, no. 3, pp.

–269.

Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in

retinal images by piece-wise threshold probing of a matched filter

response”, IEEE Trans. Med. Imag., Mar. 2000, vol. 19, no. 3, pp.

–210.

H. Li and O. Chutatape, "Automated feature extraction in color retinal

images by a model based Approach”, IEEE Trans. Biomed. Eng., Feb.

, vol. 51, no. 2, pp. 246-254.

F. Zana and J. Klein, “Segmentation of vessel-like patterns using

mathematical morphology and curvature evaluation”, IEEE Trans. Image

Process., Jul. 2001, vol. 10, no. 7, pp. 1010–1019.

J. Lowell, A. Hunter, D. Steel, A. Basu, R. Ryder, and R. L. Kennedy,

“Measurement of retinal vessel widths from fundus images based on 2-d

modeling”, IEEE Trans. Med. Imag., Oct. 2004, vol. 23, no. 10, pp.

–1204.

L. Wang, A. Bhalerao, and R. Wilson, “Analysis of retinal vasculature

using a multiresolution hermite model”, IEEE Trans. Med. Imag., Feb.

, vol. 26, no. 2, pp. 137–152.

M. Sotka, C. V. Stewart, "Retinal vessel centerline extraction using

multiscale matched filters, confidence and edge measures”, IEEE Trans.

Med. Imag., Dec. 2006, vol. 25, no. 12, pp. 1531-1545.

X. Jiang and D. Mojon, “Adaptive local thresholding by verification

based multithreshold probing with application to vessel detection in

retinal images”, IEEE Trans. Pattern Anal. Mach. Intell., Jan. 2003, vol.

, no. 1, pp. 131–137.

O. Chutatape, L. Zheng, and S. Krishnan, “Retinal blood vessel detection

and tracking by matched gaussian and kalman filters”, in Proc. IEEE Int.

Conf. Emg. Bio. Soc., 1998, vol. 20, pp. 3144–3149.

A. Can, H. Shen, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Rapid

automated tracing and feature extraction from retinal fundus images using

direct exploratory algorithms”, IEEE Trans. Inf. Technol. Biomed., Jun.

, vol. 3( 1), pp. 1–15.

H. Shen, B. Roysam, C. V. Stewart, J. N. Turner, and H. L. Tanenbaum,

“Optimal scheduling of tracing computations for real-time vascular

landmark extraction from retinal fundus images”, IEEE Trans. Inf.

Technol. Biomed., Mar. 2001, vol. 5, no. 1, pp. 77–91.

V. J. Soares, J. J. Leandro, R. M. J. Cesar, F. H. Jelinek, and M. J. Cree,

“Retinal vessel segmentation using the 2-d gabor wavelet and supervised

classification”, IEEE Trans. Med. Imag., Sep. 2006, vol. 25, no. 9, pp.

–1222,.

J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and B. van

Ginneken, "Ridge-based vessel segmentation in color images of the

retina”, IEEE Trans. Med. Imag., Apr. 2004, vol. 23, no. 4, pp. 501-509.

C. A. Lupas, D. Tegolo, and E. Trucco, “FABC: Retinal vessel

segmentation using adaboost”, IEEE Trans. on Info. Tech. in Biomed.,

Sept. 2010, vol. 14, no. 5.

M. C. Morrone, J. R. Ross, D. C. Burr, and R. A. Owens, “Mach bands are

phase dependent”, Nature, Nov. 1986, vol. 324, no. 6094, pp. 250–253.

M. C. Morrone and R. A. Owens, “Feature detection from local energy”,

, Patt. Reco. Lett., vol. 6, pp. 303–313.

P.D. Kovesi, “Image features from phase congruency”, Videre: Jour. of

Comp. Vis. Res., summer 1999, vol. 1, no. 3, The MIT Press.

J. Morlet, G. Arens, E. Fourgeau, and D. Giard, “Wave propagation and

sampling theory - Part II: sampling theory and complex waves”,

Geophysics, Feb. 1982, vol. 47, no. 2, pp 222–236.

Y. Yu and S. T. Acton, “Speckle reducing anisotropic diffusion”, IEEE

Trans. on Im. Proc., Nov 2002, vol. 11, no. 11.

P. D. Wellner, “Adaptive Thresholding for the DigitalDesk”, Technical

Report EPC-1993-110, Rank Xerox Research Centre, Cambridge

Laboratory, 61 Regent Street, Cambridge CB2 1AB.

P.D. Kovesi, MATLAB functions for computer vision and image analysis

(1996-2003) http://www.csse.uwa.edu.au/»pk/Research/MatlabFns/.

T. Walter, P. Massin, A. Erginay, R. Ordonez, C. Jeulin, and J. C. Klein,

“Automatic detection of microaneurysms in color fundus images”, Med.

Image Anal., 2007, vol. 11, pp. 555–566.

D. Marin, A. Aquino, M. E Gegundez-Arias, J. M. Bravo, “New

supervised method for blood vessel segmentation in retinal images by

using gray-level and moment invariants-based features”, IEEE Trans. on

Med. Imag., Jan 2011, vol. 30, no. 1, pp 146-154.

A. Hoover, STARE database [Online]. Available:

http://www.ces.clemson.edu/-ahoover/stare


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.