Open Access Open Access  Restricted Access Subscription or Fee Access

Automatic Identification of Visual Impairment Using Optic Disc Segmentation

R. Alaguraj, S.J. Graceshoba


The extraction of optic disc from the fundus image is key process for automatic recognition of visual impairment. Automatic recognition is the technique which is used to detect the disease occurs in optic disc (OD).The proposed methodprincipal component analysis allows to detect Optic disc contour more accurately. Principal component analysis (PCA) is the preprocessing step along the mathematical morphological operations for optic disc segmentation. This stage is very important to get final result veryprecisely. The principal component analysis applied on the input retinal fundus image to get better representation of gray scale image. The main idea of PCA to reduce the dimensionality and then speed up the automation process. Along with this PCA number of mathematical morphological operations such as Inpainting algorithm, stochastic watershed, and geodesic transformations will be done to extract optic disc. By extracting the required features we can identify the visual impairment. Firstly, Cup to Disc ratio will be calculated to identify the glaucoma by using Hough Transform. Secondly, Micro aneurysms will be detected to identify the Diabetic Retinopathy. Extended minima transform and Blob Algorithm are used to detect Micro aneurysms.


Micro Aneurysms, Diabetic Retinopathy, Extended Minima Transform, BlobAlgorithm, Hough Transform.

Full Text:



D. Pascolini and S. P.Mariotti, “Global estimates of visual impairment:2010,” Br. J. Ophthalmol., pp. 614–621, 2011.

World Health Org., Action plan for the prevention of blindness andvisual impairment 2009–2013 2010.

H. R. Taylor, “Eye care for the community,” Clin. Exp. Ophthalmol.,vol. 30, no. 3, pp. 151–154, 2002.

T. Walter, J. C. Klein, P. Massin, and A. Erginay, “A contribution ofimage processing to the diagnosis of diabetic retinopathy-detection ofexudates in color fundus images of the human retina,” IEEE Trans.Med. Imag., vol. 21, no. 10, pp. 1236–1243, Oct. 2002.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L.S. Cooper, A. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluationof retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study,” Ophthalmology,vol. 106, no. 12, pp. 2269–2280, 1999.

M. D. Knudtson, K. E. Lee, L. D. Hubbard, T. Y. Y. Wong, R. Klein,and B. E. Klein, “Revised formulas for summarizing retinal vessel diameters,”Current Eye Res., vol. 27, no. 3, pp. 143–149, Sep. 2003.

J. Liu, D. W. K. Wong, J. H. Lim, H. Li, N. M. Tan, Z. Zhang, T.Y. Wong, and R. Lavanya, “Argali: An automatic cup-to-disc ratiomeasurement system for glaucoma analysis using level-set imageprocessing,” in 13th International Conference on Biomedical Engineering.Berlin, Germany: Springer, 2009, vol. 23, pp. 559–562.

Y. Hatanaka, A. Noudo, C. Muramatsu, A. Sawada, T. Hara, T. Yamamoto,and H. Fujita, “Automatic measurement of vertical cup-todiscratio on retinal fundus images,” in Medical Biometrics. Berlin,Germany: Springer, 2010, vol. 6165, Lecture Notes Comput. Sci., pp.64–72.

M. Niemeijer, M. D. A. Moff, and B. van Ginneken, “Fast detectionof the optic disc and fovea in color fundus photographs,” Med. ImageAnal., vol. 13, no. 6, pp. 859–870, 2009.

L. Gagnon, M. Lalonde, M. Beaulieu, and M. C. Boucher, “Procedureto detect anatomical structures in optical fundus images,” Proc. SPIE,vol. 4322, pp. 1218–1225, 2001.

M. Park, J. S. Jin, and S. Luo, “Locating the optic disc in retinal images,”in Proc. IEEE Int. Conf. Comput. Graph., Imag. Visualisat.,2006, pp. 141–145.

A. Aquino, M. E. Gegúndez-Arias, and D. Marín, “Detecting the opticdisc boundary in digital fundus images using morphological, edge detection,and feature extraction techniques,” IEEE Trans. Med. Imag.,vol. 29, no. 11, pp. 1860–1869, Nov. 2010.

M. Lalonde, M. Beaulieu, and L. Gagnon, “Fast and robust opticdisc detection using pyramidal decomposition and Hausdorff-basedtemplate matching,” IEEE Trans. Med. Imag., vol. 20, no. 11, pp.1193–1200, Nov. 2001.

T.KauppiandH.Kälviäinen, “Simple and robust optic disc localization using colour decorrelatedtemplates,” in Proc. 10th Int. Conf. AdvancedConcepts for Intell. Vision Syst.,. Berlin, Germany: Springer-Verlag,2008, pp. 719–729.

A. Osareh, M. Mirmehdi, B. Thomas, and R. Markham, “Comparisonof colour spaces for optic disc localisation in retinal images,” in Proc..16th Int. Conf. Pattern Recognit., 2002, vol. 1, pp. 743–746.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.