Open Access Open Access  Restricted Access Subscription or Fee Access

An Improved Particle Swarm Optimization Algorithm for the Resolution of Superimposed Motor Unit Action Potentials

R. Muthusivagami, S. Suja Priyadharsini

Abstract


This paper resolves the difficult superimpositions of Motor Unit Action Potentials (MUAPs) measured from Electromyographic Recordings using Improved Particle Swarm Optimization (IPSO) algorithm. The contraction of muscles depend on the activity of motor neurons (MNs) each giving rise to Motor Unit Action Potentials (MUAPs). Since Motor Unit (MU) firings are asynchronous, MUAPs inevitably overlap from time to time over the course of recording, making them difficult to locate. Resolution of these superimposed potentials into individual constituents is a combinatorial optimization problem which requires determining of their individual MUAPs as well as their relative time shifts. PSO is a new random computational method for tackling optimization functions. However, it is easily trapped into local optimum when solving the difficult superimposition, which makes the performance of PSO greatly reduced. To overcome this shortcoming, this paper proposes Improved Particle Swarm Optimization (IPSO) algorithm, which uses the third particle, guides the current particles’ velocity updating rule and reduces the probability of trapping into the local optimization. Thus the proposed method highly reduces the time taken to resolve difficult superimposition and gives 99.8% accuracy in simulation study. Numerical results shows that the proposed algorithm has great performance in accuracy and the results are compared with conventional particle swarm optimization.

Keywords


Electromyography (EMG), Motor Unit Action Potentials (MUAPs), Superimposition, Improved Particle swarm Optimization (IPSO).

Full Text:

PDF

References


R. S. Lefever and C. J. D. Luca, ―A procedure for decomposing the myoelectric signal into its constituent action potentials. Part I: Technique, theory, and implementation,‖ IEEE Trans. Biomed. Eng., vol. BME-29, no. 3, pp. 149–157, Mar. 1982.

R. J. P. D. Figueiredo and A. Gerber, ―Separation of superimposed signals by a cross-correlation method,‖ IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-31, no. 5, pp. 1084–1089, Oct. 1983.

P. Bonato, Z. Erim, and J. A. Gonzalez-Cueto, ―Decomposition of superimposed waveforms using the cross time frequency transform,‖ in Proc. 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2001, vol. 2, pp. 1066–1069.

H. Etawil and D. Stashuk, ―Resolving superimposed motor unit action potentials,‖ Med. Biol. Eng. Comput., vol. 34, pp. 33–40, 1996.

S. H. Nawab, R. Wotiz, and C. J. D. Luca, ―Improved resolution of pulse super positions in a knowledge-based system EMG decomposition,‖ in Proc. 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2004, vol. 1, pp. 69–71.

W. F. Hass and M. Meyer, ―An automatic EMG decomposition system for routine clinical examinations and clinical research,‖ in Computer-Aided Electromyography and Expert Systems, J. E. Desmedt, Ed. Amsterdam, The Netherlands: Elsevier, 1989, pp. 67–81.

E. H. D’Hollander and G. A. Orban, ―Spike recognition and on-line classification by unsupervised learning system,‖ IEEE Trans. Biomed.Eng., vol. BME-26, no. 5, pp. 279–284, 1979.

M. Okada and N. Maruyama, ―Software system for real-time discrimination of multiunit nerve impulses,‖ Programs Biomed., vol. 14, pp.157–164, 1981.

F. Worgotter, W. J. Daunicht, and R. Eckmiller, ―An on-line spike form discriminator for extracellular recordings based on an analog correlation technique,‖ J. Neurosci. Meth., vol. 17, pp. 141–151, 1986.

M. Salganicoff, M. Sarna, L. Sax, and G. L. Gerstein, ―Unsupervised waveform classification for multineuron recordings: A real-time software based system, I. Algorithms and implementation,‖ J. Neurosci. Meth., vol. 25, pp. 181–187, 1988.

X. Yang and S. A. Shamma, ―A totally automated system for the detection and classification of neural spikes,‖ IEEE Trans. Biomed. Eng., vol. 35, no. 10, pp. 806–816, 1988.

C. Forster and H. O. Handwerker, ―Automatic classification and analysis of microneurographic spike data using a PC/AT,‖ J. Neurosci. Meth., vol. 31, pp. 109–118, 1990.

E. V. Goodall and K. W. Horch, ―Separation of action potentials in multiunit intrafascicular recordings,‖ IEEE Trans. Biomed. Eng., vol. 39, no. 3, pp. 289–295, 1992.

H. Bergman and M. R. DeLong, ―A personal-computer-based spike detector and sorter: Implementation and evaluation,‖ J. Neurosci. Meth., vol. 41, pp. 187–197, 1992.

R. F. Jansen and A. Ter Maat, ―Automatic wave form classification of extracellular multineuron recordings,‖ J. Neurosci. Meth., vol. 42, pp. 123–132, 1992.

I. N. Bankman, K. O. Johnshon, and W. Schneider, ―Optimal detection, classification, and superposition resolution in neural waveform recordings,‖ IEEE Trans. Biomed. Eng., vol. 40, no. 3, pp. 836–841, 1993.

A. K. Kreiter, Ad. M. H. J. Aertsen, and G. L. Gerstein, ―A low-cost single board solution for real-time unsupervised waveform classification of multinueron recordings,‖ J. Neurosci. Meth., vol. 30, pp. 59–69, 1989.

J. F. Vilbert, J. N. Albert, and J. Costa, ―Intelligent software for spike separation in multiunit recordings,‖ Med. Biol. Eng. Comput., vol. 25, pp. 366–372, 1987.

M. Abeles and M. H. Goldstein, ―Multispike train analysis,‖ Proc. IEEE,vol. 65, no. 5, pp. 752–773, 1977.

D. Stashuk, ―EMG signal decomposition: How can it be accomplished and used?,‖ J. Electromyogr. Kinesiol., vol. 11, no. 3, pp. 151–173, 2001.

J. Fang, J. Ben-Arie, Z.Wang, G. C. Agarwal, and B. T. Shahani, ―Separation of superimposed EMG potentials using expansion matching technique,‖ Proc. IEEE 19th Int. EMBS, vol. 4, pt. 4, pp. 1585–1588,1997.

H. Etawil and D. Stashuk, ―Resolving superimposed motor unit action potentials,‖ Med. Biol. Eng. Comput., vol. 34, pp. 33–40, 1996.

C. I. Christodoulou and C. S. Pattichis, ―Unsupervised pattern recognition for the classification of EMG signals,‖ IEEE Trans. Biomed. Eng., vol. 46, no. 2, pp. 169–179, Feb. 1999.

J. Fang, G. C. Agarwal, and B. T. Shahani, ―Decomposition of multiunit electromyographic signals,‖ IEEE Trans. Biomed. Eng., vol. 46,no. 6, pp. 685–697, Jun 1999.

R. Chandra and L. M. Optican, ―Detection, classification, and superposition resolution of action potentials in multiunit single-channel recordings by an on-line real-time neural network,‖ IEEE Trans. Biomed.Eng., vol. 44, no. 5, pp. 403–412, May 1997.

R. Gut and G. S. Moschytz, ―High-precision EMG signal decomposition using communication techniques,‖ IEEE Trans. Signal Process.,vol. 48, no. 9, pp. 2487–2494, Sep. 2000.

K. C. McGill, ―Optimal resolution of superimposed action potentials,‖IEEE Trans. Biomed. Eng., vol. 49, no. 7, pp. 640–650, Jul. 2002.

D. Zennaro, P. Wellig, V. M. Koch, G. S. Moschytz, and T. Läubli,―A software package for the decomposition of long-term multichannel EMG signals using wavelet coefficients,‖ IEEE Trans. Biomed. Eng.,vol. 50, no. 1, pp. 58–69, Jan. 2003.

C. D. Katsis, D. I. Fotiadis, A. Likas, and I. Sarmas, ―Automatic discovery of the number of MUAP clusters and superimposed MUAP decomposition in electromyograms,‖ Proc. IEEE 4th Int. EMBS Special Topic Conf. Information Technology Applications Biomedicine, pp. 177–180, 2003.

V. M. Koch and H.-A. Loeliger, ―Decomposition of electromyographic signals by iterative message passing in a graphical model,‖ Proc. IEEE 26th IEEE EMBS, vol. 1, pt. 1, pp. 65–68, 2004.

S. Hamid Nawab, R. Wotiz, and C. J. De Luca, ―Improved resolution of pulse superpositions in a knowledge-based system EMG decomposition,‖Proc. IEEE 26th Int. EMBS, vol. 1, pt. 1, pp. 69–71, 2004.

K. C. McGill, Z. C. Lateva, and H. R. Marateb, ―EMGLAB: An interactive EMG decomposition program,‖ J. Neurosc. Methods, vol. 149, pp. 121–133, 2005.

J. H. Holland, ―Genetic algorithms,‖ Scientif. Amer., vol. 267, pp.44–69, 1992.

J. R. Florestal, P. A. Mathieu, and A. Malanda, ―Automated decompositionof intramuscular electromyographic signals,‖ IEEE Trans. Biomed.Eng., vol. 53, no. 5, pp. 832–839, May 2006.

K. C. McGill and L. J. Dorfman, ―High-resolution alignment of sampledwaveforms,‖ IEEE Trans. Biomed. Eng., vol. BME-31, no. 6, pp.462–468, Jun. 1984.

Mambrito and C. J. De Luca, ―A technique for the detection, decomposition and analysis of the EMG signal,‖ Electroencephalogr Clin Neurophys., vol. 58, pp. 175–188,1984.

S. Rasheed, D. Stashuk, and M. Kamel, ―Adaptive Fuzzy k-NN Classifier for EMG Signal Decomposition,‖ Med. Eng. Phys., vol. 28, pp.694–709, 2006.

D. Farina, A. Crosetti, and R. Merletti, ―A model for the generation of synthetic intramuscular EMG signals to test decomposition algorithms,‖IEEE Trans. Biomed. Eng., vol. 48, no. 1, pp. 66–77, Jan. 2001.analysis,‖ Proc. IEEE,vol. 65, no. 5, pp. 752–773, 1977.

J. R. Florestal, P. A. Mathieu, and R. Plamondon, ―A genetic algorithm for the resolution of superimposed motor unit action potentials,‖ IEEE Trans. Biomed. Eng., vol. 54, no. 12, pp. 2163–2171, Dec. 2007.

H. R. Marateb and K. C. McGill, ―Resolving superimposed MUAPs by particle swarm optimization,‖ IEEETran. Biomed Eng., vol. 56, no. 3, March 2009

Kennedy J, Eberhart R C, ‖Particle swarm optimization‖. Proc IEEE International Conference on Neural Networks, Perth, Australia, IEEE Service Center.Piaeataway, NJ: IEEE Press, 1995, pp.1942—1948.

K. E. Parsopoulos andM. N. Vrahatis, ―Modification of the particle swarm optimizer for locating all the globalminima,‖ in ArtificialNeuralNetworksand Genetic Algorithms, V. Kurkova, N. Steele, R. Neruda, and M. Karny,Eds. New York: Springer-Verlag, 2001, pp. 324–327

Y. Shi and R. C. Eberhart, ―A modified particle swarm optimizer,‖ in Proc.IEEE Int. Conf. Evol. Comput., 1998, pp. 69–73

F. V. den Bergh and A. P. Engelbrecht, ―A study of particle swarm optimization particle trajectories,‖ Inf. Sci., vol. 176, pp. 937–971, 2006.

V.P.Sakthivel, R.Bhuvaneswari, S. Subramanian ― An Improved Particle Swarm An Improved Particle Swarm Optimization for Induction Motor Parameter Determination, 2010 International Journal of Computer Applications (0975 – 8887) Volume 1 – No. 2

Guo H G, Wang Z G, ―An improved Particle Swarm Optimization‖, Journal of HaerBin University of Science and Technology. Vol.15, 2010.

Jiao B, Lian Z G,Gu X S.‖A dynamic inertia weight particle swarm optimization algorithm‖. Chaos, Selitons and Fractals, Vol.37, 2008, pp:698—705.

Sui H W, A G Li. ―A Novel Particle Swarm Optimization Algorithm‖. Computer Engineering and Application, Vol.13,2003.

http://www.emglab.net


Refbacks

  • There are currently no refbacks.