

Classifying the Depression Data Polynomial Discriminant Vectors
Abstract
This paper discusses the preprocessing and
classification of depression data using back propagation algorithm
(BPA).In general, input vectors will not be orthogonal to each other.
The proposed method of preprocessing the input vector makes
possible BPA learn the input vectors. The classification performance
of BPA have been shown for a minimum 80%.
Keywords
References
D.Altman, ”Practical Statistics for Medical Research”, Chapman and
hall,1991.
D.G.Kleinbaum and L. Kupper, “Epidemiologic Research - Principles
and Quantitative Methods”, John Wiley & Sons, New York, 1982.
S.Tsumoto, G.Medzcine, W. Kloesgen and J.Zytkow, “Handbook of
Knowledge Dsicovery and Data Mining”.
J Van Bemme1 and M.A Musen,” Handbook of Medical Informatics”,
Springer-Verlag , New York, 1997.
Y Shahar and M.A Musen, “Knowledge-based Temporal Abstraction in
Clinical Domains”, Artif. Intell. In Med. 8, pp.267-298, 1996.
Ming-Syan Chen, Jiawei Han and S. Philip, “Data Mining, an Overview
from a Database Perspective”, IEEE Transactions on Knowledge and
Data Engineering, Vol. 8(6), pp. 866-883, December 1996.
F.Pena-Mora and K.Hussein,”Interaction Dynamics in Collaborative
Civil Engineering Design Discourse, Applications in Computer
Mediated Communication”, Journal of Computer Aided Civil and
Infrastructure Engineering, Vol. 14, pp. 171-185, 1998.
Usama Fayyad, “Data Mining and Knowledge Discovery in Databases:
Implications for Scientific Databases”, Proceedings of the 9th
International Conference on Scientific and Statistical Database
Management (SSDBM '97). Olympia, WA, pp. 2-11, 1997.
Usama M. Fayyad, “Data Mining and Knowledge Discovery, Making
Sense Out of Data”, IEEE Expert, pp. 20-25, October 1996.
M. S Sousa, M. L. Q Mattoso and N. F. F Ebecken, “Data Mining: A
Database Perspective”, COPPE, Federal University of Rio de Janeiro,
pp.1-19, 1998.
Themistoklis Palpanas, ”Knowledge Discovery in Data Warehouses”.
ACM Sigmod Record. Vol. 29(3), pp. 88- 100, September 2000.
Manal Abdel Wahed, Khaled Wahba, ”Data Mining Based-Assistant
Tools for Physicians to Diagnose Diseases”, IEEE Trans, pp 388-391,
L Fortuna, S Graziani, M LoPresti and G Muscato”, Improving back
propagation learning using auxiliary neural networks”, Int. J of Cont.,
(4), pp 793-807, 1992.
R.P Lippmann, ”An introduction to computing with neural nets”, IEEE
Trans. On Acoustics, Speech and Signal Processing Magazine, V35, N4,
pp.4.-22, 1987.
Y.L Yao and X.D Fang, “Assessment of chip forming patterns with tool
wear progression in machining via neural networks”, Int.J. Mach. Tools
& Mfg, 33 (1), pp 89 -102, 1993.
D.R Hush and B.G Horne, “Progress in supervised neural networks”,
IEEE Signal Proc. Mag., pp 8-38, 1993.
Bernard Widrow, “30 Years of adaptive neural networks, Perceptron,
madaline and back-propagation”, Proc. of the IEEE, 18(9), pp 1415 –
, 1990.
Y Hirose, K.Y Yamashita and S Hijiya, “Back-propagation algorithm
which varies the number of hidden units, Neural Networks”, 4, pp 61-66.
S.A Berkowitz, R.A Bell, R.L Kravitz and M.D Feldman,” Vicarious
experience affects patients' treatment “, PLoS One, 7(2):e31269. Epub
Feb 21, 2012.
J.C Fournier, R.J DeRubeis, S.D Hollon, S Dimidjian, J.D Amsterdam ,
R.C Shelton, J Fawcett ,”Antidepressant drug effects and depression
severity: a patient-level meta-analysis”, JAMA.,303(1):47-53, Jan
,2010.
NA Khin , YF Chen, Y Yang, P Yang , T.P Laughren , ” Exploratory
analyses of efficacy data from majordepressive disorder trials submitted
to the US Food and Drug Administration in support of New Drug
Applications”, J Clin Psychiatry , 72(4):464-72 , April 2011.
Refbacks
- There are currently no refbacks.