Open Access Open Access  Restricted Access Subscription or Fee Access

Exploring the Hypothetical Proteins in Rizhophages and Their Role in Influencing Rhizobium Species in Soil

Waman Narayan Paunikar, Swapnil Ganesh Sanmukh, Tarun Kanti Ghosh

Abstract


The Rhizophages are the viruses that infect the Rhizobium spp. present in soil and root nodule of nitrogen fixing bacteria. The genome sequencing of some Rhizophages highlights the presence of various gene sequences for hypothetical proteins which are still unclassified. We analyzed complete genome of 3 Rhizophages for hypothetical proteins for our studies. This attempt is made to predict the structure and function of these hypothetical proteins by the application of computational methods. The probable function prediction of the hypothetical protein was done by using bioinformatics web tools like CDD-BLAST, INTERPROSCAN, PFAM and COGs by searching orthologous conserved domains in the hypothetical sequences. While tertiary structures were constructed using PS2 Server (Protein Structure Prediction server). The 105 uncharacterized proteins were functionally classified and structures were predicted for 39 hypothetical protein. This information of hypothetical proteins can be used for the understanding of structural, functional and evolutionary development of Rhizophages and Rhizobium spp.

Keywords


Nitrogen Fixing Bacteria, Bioinformatics Web Tools, Conserved Domains, Uncharacterized Proteins, Evolutionary Development

Full Text:

PDF

References


Alex, B., Lachlan, C., Richard, D., Robert, D. F., Volker, H., Sam, G.J., Ajay, K., Mhairi, M., Simon, M., Erik, L. L. S., David, J. S., Corin Y., Sean, R. E. The Pfam families’ database. Nucleic Acids Research, Vol. 32, D138-D141 (2004).

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. Gapped BLAST and PSI-BLAST: “a new generation of protein database search programs”. Nucleic Acids Res. 25 (17), 3389-402 (1997).

Aron, M. Bauer., John, B. A., Myra, K. D., Carol, D. S., Noreen, R. G., Marc, G., Luning, H., Siqian, H., David, I. H., John, D. J., Zhaoxi, K., Dmitri, K., Christopher, J. L.,Cynthia A. L., Chunlei, L., Fu, L., Shennan, L., Gabriele, H. M., Mikhail, M., James, S. S., Narmada, T., Roxanne, A. Y., Jodie, J. Y., Dachuan, Z., Stephen, H. B. CDD: “a conserved domain database for interactive domain family analysis. “Nucleic Acids Research, Vol. 35, D237–D240 (2006).

Barnet, Y. M. Bacteriophages of Rhizobium trifolii. I. Morphology and host range. J. Gen. Virol. 15:1-15 (1972).

Boyer, M., Haurat, J., Samain, S., Segurens, B., Gavory, F., Gonzalez, V., Mavingui, P., Rohr, R., Bally, R. and Wisniewski-Dye, F. Bacteriophage prevalence in the genus Azospirillum and analysis of the first genome sequence of an Azospirillum brasilense integrative phage Appl. Environ. Microbiol. 74 (3), 861-874 (2008)

Cedric, N., Desmond, G. H., Jaap, H. T-coffee: “a novel method for fast and accurate multiple sequence alignment.” J. Mol. Biol. 302, 205-217 (2000).

Chih-Chieh, C., Jenn-Kang, H., Jinn-Moon, Y. (PS)2: “protein structure prediction server Nucl.” Acids Res. 34, W152-W157 (2006).

Crozat Y, Cleyet-Marel JC, Giraud JJ, Obaton M. Survival rates of Rhizobium japonicum populations introduced into soils. Soil Biol Biochem 14, 401-405 (1982).

Deak, V., Lukacs, R., Buzas, Z., Palvolgyi, A., Papp, P. P., Orosz, L. and Putnoky, P. Identification of tail genes in the temperate phage 16-3 of Sinorhizobium meliloti 41. J. Bacteriol. 192 (6), 1617-1623 (2010)

Dhar, B., B. D. Singh, R. B. Singh, J. S. Srivastava, and R. M.Singh. Seasonal incidence of rhizobiophages in soils around Varanasi. Indian J. Exp. Biol. 18:1168-1170 (1980).

Dhar, B., B. D. Singh, R. B. Singh, J. S. Srivastava, V. P. Singh, and R. M. Singh. Occurrence and distribution of rhizobiophages in Indian soils. Acta Microbiol. Pol. 23:319-324 (1979).

Gleen AR, Diworth MJ. The uptake and hydrolysis of disaccharide by fast and slow growing species of Rhizobium. Arch Microbiol 139, 233-239 (1981).

Golebiowska, J., A. Sawicka, and J. Swiateck.. The occurrence of rhizobiophages in various lucerne plantations. Acta Microbiol. Pol. 25:161-163 (1976).

Kleczkowska, J. A study of distribution and effects of bacteriophage of root-nodule bacteria in the soil. Can. J. Microbiol. 3:171-180 (1957).

Kowalski, M. Transduction in Rhizobium meliloti. Acta Microbiol. Pol. 16:7-12 (1967).

Kowalski, M., G. E. Ham, L. R. Frederick, and I. C. Anderson. Relationship between strains of Rhizobium japonicum and their bacteriophages from soil and nodules of field-grown soybeans. Soil Sci. 118:221-228 (1974).

Lawson, K. A., Y. M. Barnet, and C. A. McGilchrist. Environmental factors influencing numbers of Rhizobium leguminosarum biovar trifolii and its bacteriophages in two field soils. Appl. Environ. Microbiol. 53:1125-1131 (1987).

Mendum TA, Clark IM, Hirsch PR Characterization of two novel Rhizobium leguminosarum bacteriophages from a field release site of genetically-modified rhizobia. Antonie van Leeuwenhoek J Microbiol Serol 79:189–197 (2001).

Mink, M., L. Orosz, and T. Sik. Specialised and generalized transducing rhizobiophage 16-3 and 11 are closely related. FEMS Microbiol. Lett. 13:383-387 (1982).

Nutman PS. Origin and development of root nodules. Handb Pfl Physiol 12, 1355-1379. (1965)

Paynter, M. J. B., and H. R. Bungay III. Dynamics of coliphage infections, p. 323-325. In D. Perlman (ed.), Fermentation advances. Academic Press, Inc., New York. (1969)

Reanney, D. C. Viruses and evolution. Int. Rev. Cytol. 37:21-52 (1974).

Roman, L. T., Michael, Y., Galperin, Darren A. Natale, Eugene V. Koonin. ”The COG database: a tool for genome –scale analysis of protein functions and evolution. Nucleic Acid Research.” 28, 33-36 (2000).

Sanmukh S. G., Paunikar W. N., Ghosh T. K., Chakrabarti T. Structure and function prediction of hypothetical proteins in Vibriophages. Inter. J. of Biometric and Bioinformatics vol.4 (5). (2010).

Schaffer, A. A., Aravind, L., Madden, T. L., Shavirin, S. Spouge, J. L., Wolf, Y. I., Koonin, E. V., Altschul, S. F.” Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements”. Nucleic Acids Res. 29(14), 2994-3005 (2001).

Schulmeister, S. A., Krol, J. E., Vorhoelter, F. J., Skorupska, A. M. and Lotz, W. Sequence of the genome of Sinorhizobium meliloti bacteriophage PBC5 Unpublished

Staniewski, R. Typing of Rhizobium by phages. Can. J. Microbiol. 16:1003-1009 (1970).

Subba Rao NS. Rhozobium and legume root nodulation. In Soil Microbiology. P.169. Oxford & IBH publishing Co. Pvt. Ltd. New Delhi (1999).

Vandecaveye, S. C., and H. Katznelson. Bacteriophage as related to the root nodule bacteria of alfalfa. J. Bacteriol. 31:465-477 (1936).

Vincent, J. M. A manual for the practical study of root nodule bacteria. In International Biological Programme handbook no. 15. Blackwell Scientific Publications, Ltd. Oxford. (1970).

Vincent, J. M. Root nodule symbiosis with Rhizobium, p. 265-341. In A. Quispel (ed.), Biology of nitrogen fixation. North-Holland Publishing Co., Amsterdam (1974).

Vincent, J. M. Rhizobium: general microbiology, p. 277-366. In R. W. F. Hardy and W. S. Silver (ed.), A treatise on dinitrogen fixation. Section III. Biology. John Wiley & Sons, Inc., New York (1977)

Wdowiak S, Małek W Morphology and general characteristics of phages specific for Astragalus cicer rhizobia. Curr Microbiol 40:110–113 (2000)

Wendy, B. et al. “The EMBL Nucleotide Sequence Database”. Nucleic Acid Research. 28, 19-23 (2000).


Refbacks

  • There are currently no refbacks.