Open Access Open Access  Restricted Access Subscription or Fee Access

Analysis and Modeling of Hybrid Operational Amplifiers Using Amorphous Silicon Thin Film Transistor

G. Prabhakaran, V. Kannan

Abstract


 A new technique is presented in this paper for the design of a Hybrid TFT operational amplifier made by morphous Silicon thin film transistor and MOSFET which operates at 3V power supply. The OPAMP designed is a two-stage Hybrid TFT OPAMP followed by an output buffer. This Operational Amplifier employs a Miller capacitor and is compensated with a current buffer compensation technique. The unique behaviour of the MOS transistors in saturation region not only allows a designer to work at a low voltage, but also at high frequency. Designing of two-stage op-amps is a multi-dimensional-optimization problem where optimization of one or more parameters may easily result into degradation of others. As compared to the conventional approach, the proposed hybrid operational amplifier result in a higher unity gain amplifier under the same load condition. In this paper we analyze the results of non-inverting amplifier, inverting amplifier, differential amplifier, differentiator and integrator of hybrid operational amplifier, using simulation with Integrated Circuit Emphasis (HSPICE).


Keywords


Operational Amplifier, Hybrid, Non-Inverting Amplifier, Inverting Amplifier, Differential Amplifier, Differentiator, Integrator, Amorphous Silicon Thin Film Transistor, MOSFET, Simulation, HSPICE.

Full Text:

PDF

References


Allee, D.R., Clark, L.T., Vogt, B., Shringarpure, R., Venugopal, S.M., Uppili, S.G., Kafthanoglu, K., Shivanlingaiah, H., Li, Z., Fernando, J.J.R., Bawolek, E., O‟ Rourke, S.M., 2009: “Circuit Level Impact of a-Si:HThin-Film Transistor Degradation effects,” IEEE Trans. Electron Devices, 56, pp. 1166-1176.

Venugopal, S.M. and Allee, D.R., 2007: Integrated a-Si:H source drivers for 4 QVGA electrophoretic display on flexible stainless steel substrate, IEEE Journal of Display Technology, 3, pp. 57-63.

Shringarpure, R., Clark, L.T., Venugopal, S.M., Allee, D.R., and Uppili, S.G., 2008: Amorphous Silicon Logic Circuits on Flexible Substrates,Proceedings of 2008 IEEE Custom Integrated Circuits Conference, Sept.21-24, 2008, San Jose, California.

Gay, N., Fischer, W., Halik, M., Klauk, H., U Zschieschang, and Schmid, G., 2006: "Analog Signal Processing with Organic FETs," ISSCC Digest of Technical Papers, Feb, 2006, San Francisco, California, pp: 1070-1079.

S. Pennisi, High-performance CMOS current feedback operational amplifier, in Proc. IEEE Int. Symp. on Circ. and Syst. (ISCAS), II, Kobe,Japan, pp. 1573– 1576 (2005)

Xiong, W., Gou, Y., Zschieschang, U., Klauk, H. and Murman, B., 2009:“A 3-V, 6-bit C-2C Digital-to-Analog Converter using Complementary Organic Thin-Film Transistors on Glass,” Proc. ESSCIRC, Sep. 2009, pp:

-215.

Sebastian, S., Meerheim, R., Walszar K. and Leo, K., 2008: “Chemical degradation mechanisms of organic semiconductors”. Proc. SPIEOrganic Optoelectronics and Photonics III, P L. Heremans Ed., 6999, pp: 1-B1-1B10.

Tarn, Y.C., Ku, P.C., Hsieh, H.H. and Lu, L.H., 2010: “An Amorphous Silicon Operational Amplifier and its Application to 4 Bit Digital to Analog Converter,” IEEE J. Solid State Circuits, 45, pp. 1028-1035.

Johns, D. and Martins, K., Analog Integrated Circuit Design, John Wiley and Sons Inc. Senderowicz, D., Hodges, D., and Gray, P.R., 1982: “High Performance NMOS Operational Amplifier,” IEEE J. Solid State Circuits,13, pp. 760-66.

Senderowicz, D. and Huggins, J.H., 1978: “A Low-Noise NMOS Operational Amplifier,” IEEE J. Solid State Circuits, 17, pp. 999-1008.

Hung, Y.C., Liu, B.D., 2002, “A 1 V CMOS analog comparator using auto-zero and complementary differential-input technique,” ASIC, 2002.Proceedings. 2002 IEEE Asia-Pacific Conference.

Allee, D.R., Venugopal, S.M., Krishna, R., Kafthanoglu, K., Quevedo,M., Gowrishankar, S., Avendano-Bolivar, A.E., Alshareef, H.N., Gnade,B., 2009: “Flexible CMOS and Electrophoretic Display,” Society for Information Displays, International Symposium Digest of Technical papers, June 2009, San Antonio, Texas, pp: 45-54.

D.A Johns and K. Martin, Analog Integrated Circuit Design. New York Willey, 1997.

Gregorian R., and Temes, G.C. “Analog MOS Integrated Circuits for Signal Processing”, John Wiley and Sons, 1986.

Huijsing J., Hogervorst R. and de Langen K., “Low-power low-voltage VLSI operational amplifier cells”. IEEE Transactions on circuits and systems-II, 42, pp.841-852, nov-1995

G. Palmisano and G. Palumbo and R. Salerno “CMOS output stages for low voltage power supply” IEEE Trans. On CAS part-II 47(2), pp 96-104,feb 2000

G. Palmisano and G. Palumbo “A very efficient CMOS low voltage output stage” , IEEE Electronic Letters 31(21). pp 1830-1831, 1995

G. Palmisano, G. Palumbo and S. Pennisi “Design Procedure for Two-Stage CMOS Transconductance Operational Amplifiers: A Tutorial”; Analog Integrated Circuits and Signal Processing, 27,179–189, 2001.

Mahattanakul, J. and Chutichatuporn, J. (2005) ” Design Procedure for Two-Stage CMOS OPAMP with Flexible Noise-Power Balancing Scheme”. IEEE Transaction on Circuits and Systems-I: Regular Paper 52,pp. 1508-1514.

Pugliese, A. , Cappuccino, G. and Cocorullo, G. (2008) ” Design Procedure for Settling Time Minimization in Three-Stage Nested Miller Amplifiers”. IEEE Transaction on Circuits and Systems-II 55, pp. 1-5.

R. Kr. Baruah, “Design of a low power low voltage CMOS Opamp” , International Journal of VLSI design & communication systems, vol. 1,no. 1, mar-2010.

R.Gonzalez, B.M. Gordon, M.A Horowitz, “Supply and Threshold voltage scaling for low power CMOS”, IEEE journal of solid state Electronics, Vol sc 32, No 8, June 1997.

Ehsan Kargaran, Hojat Khosrowjerdi and Karim Ghaffarzadegan, ”A 1.5 V High Swing Ultra- Low-Power Two Stage CMOS OP-AMP in 0.18 μm Technology. 2010 2nd International Conference on Mechanical and Electronics Engineering (ICMEE 2010).

Mohammad Taherzadeh-Sani and Anas A. Hamoui,”A 1-V

Process-Insensitive Current Scalable Two-Stage Opamp With Enhanced DC Gain and Settling Behavior in 65-nm Digital CMOS”, IEEE Journal of Solid State Circuits, Vol. 46, No. 3, Mar-2011.

Anshu Gupta and D.K. Mishra, R. Khatri,” A Two Stage and Three Stage CMOS OPAMP with Fast Settling, High DC Gain and Low Power Designed in 180nm Technology”, Digital Object Identifier: 10.1109/CISIM.2010.5643497 (CISIM 2010), pp. 448 – 453, Nov.2010.

Johns, D. and Martins, K., Analog Integrated Circuit Design, John Wiley and Sons Inc.

Hoffman, R., Emery, T., Yeh, B., Koch, T. and Jackson, W., 2009: “Zinc Indium Oxide Thin-Film Transistors for Active-Matrix Display Backplane”, in SID Symp. Int. Tech. Papers, May 2009, pp. 288-291.

Wang, Y.Lin, Lim, F.R.W., Norton, D.P., Pearton, S. J., Kravchenko, I.I.and Zavada, J.M., 2007: “Room Temperature Deposited Indium Zinc Oxide Thin Film Transistors,” Appl Phys. Lett., 90, pp.232103.1-232103.3.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.