Open Access Open Access  Restricted Access Subscription or Fee Access

ALN Barrier with High Sheet Carrier Density for High Power Application

A. Uma, Dr. S. Baskaran

Abstract


The Aluminium gallium nitride (AlGaN) has a wide band gap and large polarization charge which result in high carrier density even when using ultrathin barrier layers, Al-rich-barrier GaN-based high-electron-mobility transistors (HEMTs) are of increasing interest. For instance, it has been demonstrated that In0.19Al0.81N/GaN or AlN/GaN HEMTs could be an alternative to the commonly used AlGaN/GaN heterostructure for high-frequency and high-power GaN-based applications. Ultrathin-barrier normally off AlN/GaN/AlGaN double-heterostructure field-effect transistors using an in situ SiN cap layer have been fabricated on 100-mm Si substrates for the first time. The high 2DEG density in combination with an extremely thin barrier layer leads to enhancement-mode devices with state-of-the-art combination of specific ON-resistance that is low and breakdown voltage is high at zero biasing voltage. Despite the 2-μm gate length used, the transconductance peaks high. Furthermore, pulsed measurements show that the devices are dispersion free up to high drain voltage VDS. More than 200 devices have been characterized in order to confirm the reproducibility of the results. Power switching devices could also benefit from an ultrathin Al-rich barrier material.


Full Text:

PDF

References


F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain, and G. Borghs, “Low On-Resistance High-Breakdown Normally Off AlN/GaN/AlGaN DHFET on Si Substrate”, IEEE Electron Device Letters, vol. 31, no. 2, February 2010.

D. Visalli, M. Van Hove, J. Derluyn, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, “AlGaN/GaN/AlGaN double heterostructures on silicon substrates for high breakdown voltage field-effect transistors with low ON-resistance,” Phys. Stat. Sol. (C), vol. 6, no. S2,pp. S988–S991, Jun. 2009.

R. Cuerdo, Y. Pei, Z. Chen, S. Keller, S. P. DenBaars, F. Calle, and U. K. Mishra, “The kink effect at cryogenic temperatures in deep submicron AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 30, no. 3, pp. 209–212, Mar. 2009.

R. Chu, Z. Zhen, Y. Pei, S. Newman, S. P. DenBaars, and U. K. Mishra, “MOCVD-grown AlGaN buffer GaN HEMTs with V-gates for microwave power applications,” IEEE Electron Device Lett., vol. 30, no. 9, pp. 910–912, Sep. 2009.

Lorenz, J. Derluyn, J. Das, K. Cheng, S. Degroote, F. Medjdoub, M. Germain, and G. Borghs, “Influence of thermal annealing steps on the current collapse of fluorine treated enhancement mode SiN/AlGaN/GaN HEMTs,” Phys. Stat. Sol. (C), vol. 6, no. S2, pp. S996–S998, Jun. 2009.

F. Medjdoub, M. Alomari, J.-F. Carlin, M. Gonschorek, E. Feltin, M. A. Py, N. Grandjean, and E. Kohn, “Barrier layer scaling of InAlN/GaN HEMTs,” IEEE Electron Device Lett., vol. 29, no. 5, pp. 422–425, May 2008.

M. Higashiwaki, T. Mimura, and T. Matsui, “Enhancement-mode AlN/GaN HFETs using Cat-CVD SiN,” IEEE Trans. Electron Devices, vol. 54, no. 6, pp. 1566–1570, Jun. 2007.

Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, “Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3393–3399, Dec. 2007.

F. Medjdoub, J.-F. Carlin, M. Gonschorek, E. Feltin, M. A. Py, D. Ducatteau, C. Gaquiere, N. Grandjean, and E. Kohn, “Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices?” IEDM Tech. Dig., 2006, pp. 927–930.

Y. Ohmaki, M. Tanimoto, S. Akamatsu, and T. Mukai, “Enhancement mode AlGaN /AlN/ GaN high electron mobility transistor with low ON-state resistance and high breakdown voltage,” Jpn. J. Appl. Phys., vol. 45, no. 44, pp. L1 168–L1 170, 2006.

J. Derluyn, S. Boeykens, K. Cheng, R. Vandersmissen, J. Das, W. Ruythooren, S. Degroote, M. R. Leys, M. Germain, and G. Borghs, “Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer,” J. Appl. Phys., vol. 98, no. 5, p. 054 501, Sep. 2005.

M. Micovic, P. Hashimoto, M. Hu, I. Milosavljevic, J. Duvall, P. J. Willadsen, W.-S. Wong, A. M. Conway, A. Kurdoghlian, P. W. Deelman, J.-S. Moon, A. Schmitz, and M. J. Delaney, “GaN double heterojunction field effect transistor for microwave and millimeterwave power applications,” in IEDM Tech. Dig., 2004, pp. 807–810.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.