Open Access Open Access  Restricted Access Subscription or Fee Access

Building n-bit ADC Using ADC General Cell Architecture in Two Different Configurations with Sample Circuit Implementations

Yasser S. Abdalla

Abstract


This work introduces a new general architecture for an Analog to Digital Converter (ADC) cell. Each ADC cell generates one digital output bit when an analog voltage is applied at its input and produces an analog voltage. This analog voltage is suitable to be used as an input for another ADC cell in order to produce another digital output bit. This new ADC cell architecture is used as a building block to construct n-bit ADC in two different architectures. The first architecture uses n ADC cells to realize n-bit ADC and generates parallel digital output. The second architecture uses only one ADC cell to achieve n-bit ADC and creates n-bit serial digital output. A sample circuit realization is presented for each n-bit ADC and supported by simulation results. The first ADC architecture produces clean digital output when simulated at 50 Msample/sec while the other ADC architecture is simulated at 5Ksample/sec.


Keywords


Analog to Digital Converters, Quantization Levels, Comparators, Parallel Output, Serial Output

Full Text:

PDF

References


Newnes, Analog Devices, The Data Conversion Handbook, (2005).

Kertis R. A. A 20 GS/s 5‐Bit SiGe BiCMOS Dual‐Nyquist Flash ADC with Sampling Capability up to 35 GS/s Featuring Offset Corrected Exclusive‐Or Comparators. IEEE Journal of Solid‐State Circuits, 44( 9), 2295 – 2311, Sept. (2009).

Murmann B. A/D converter trends: Power dissipation, scaling and digitally assisted architectures. Custom Integrated Circuits Conference, 105 – 112, Sept. (2008).

Nuzzo P., Nani C., Armiento C., Sangiovanni-Vincentelli A., Craninckx J., and Van der Plas G. Jan. A 6-bit 50-MS/s threshold configuring SAR ADC in 90-nm digital CMOS. IEEE Trans. Circuits Syst. I, Reg. Papers, 59(1), 80–92, (2012).

Ali A. A 16b 250 MS/s IF-sampling pipelined ADC with background calibration. IEEE J. Solid-State Circuits, 45(12), 2602–2612, Dec. (2010).

Wei H., Chan C., Chio U., Sin S., Martins U., and Maloberti F. An 8-b 400-MS/s 2-b-per-cycle SAR ADC with resistive DAC. IEEE J. Solid-State Circuits, 47(11), 2763–2772, Nov. (2012)

Miyahara Y., Sano M., Koyama K., Suzuki T., Hamashita K., and Song B. Adaptive cancellation of gain and nonlinearity errors in pipelined ADCs. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, . 282–283, (2013).

AmolInamdar, AnubhavSahu, JieRen, AniruddhaDayalu, and Deepnarayan Gupta, (2013) “Flash ADC Comparators and Techniques for their Evaluation”, IEEE Transactions on Applied Superconductivity, Vol.23, no.3, ISSN No.1051-8223, pp.1-8.

Xiangliang Jin, Zhibi Liu, and Jun Yang, (2013) “New Flash ADC Scheme With Maximal 13 Bit Variable Resolution and Reduced Clipped Noise for High-Performance Imaging Sensor”, IEEE Sensors Journal, Vol. 13, no.1, pp. 167-171.

Young-Kyun Cho, Jae-Ho Jung, and Kwang Chun Lee, (2012) “A 9-bit 100-MS/s Flash-SAR ADC without Track-and-Hold Circuits”, International Symposium on Wireless Communication Systems (ISWCS), ISSN: 2154-0217, ISBN No. 978-1-4673-0761-1, pp.880-884.

JoyjitMukhopadhyay and SoumyaPandit, (2012) “Modeling and Design of a Nano Scale CMOS Inverter for Symmetric Switching Characteristics”, Hindawi Publishing Corporation VLSI Design, Vol.2012, pp.1-13.

MeghanaKulkarni, V. Sridhar, G.H. Kulkarni,(2010)“4-Bit Flash Analog to Digital Converter Design using CMOS-LTE Comparator”, IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) ISBN no. 978-1-4244-7456-1, pp.772-775.

Conor Donovan and Michael P. Flynn, “A Digital 6-bit ADC in 0.25-μm CMOS”, IEEE Journal of Solid-State Circuits, Vol. 37, No. 3, March 2002

P.Iyappan, P.Jamuna and S.Vijayasamundiswary, (2009) “Design of Analog to Digital Converter Using CMOS Logic”, IEEE International Conference on Advances in Recent Technologies in Communication and Computing, ISBN no. 978-0-7695-3845-7, pp. 74-76.

Yun-Shiang Shu, (2012) “A 6b 3GS/s 11mW Fully Dynamic Flash ADC in 40nm CMOS with Reduced Number of Comparators”, IEEE Symp. on VLSI Circuits Design, ISBN: 978-1-4673-0848-9, pp. 26-2

Amir Zjajo Jose, Pineda de Gyvez (2011) “Low-Power High Resolution Analog to Digital Converters, Design Test and Calibration” ISBN 978- 90-481-9724-8, First edition, Springer NewYork.

Ali Tangel and Kyusun Choi, “The CMOS Inverter as a Comparator in ADC Design”,Analog Integrated Circuits and Signal Processing, 39, 147-155, 2004.

A 12-bit 20MS/s 56.3mW Pipelined ADC with Interpolation-Based Nonlinear Calibration Jie Yuan, Member, IEEE, Sheung Wai Fung, Kai Yin Chan, and Ruoyu Xu, Student Member, IEEE

Low-Power Pipeline ADC for Wireless LANs J. Arias, V. Boccuzzi, L. Quintanilla,L. Enríquez, D. 113 | P a g e Bisbal, M. Banu, and J. Barbolla IEEE 2004.

A 6 BIT 1.2 GSps low power flash ADC IN 0.13um digital CMOS Martin clara andreas santner thamos hartig IEEE 2005.

A Pipeline Analogue to Digital Converter in 0.35 μm CMOS S.W. Ross†, StudenT Member, IEEE, and S. Sinha Member, IEEE 2007.

A 7 bit 16MS/s low power cmos pipeline ADC Zhuang zhaodong ,li zhiqug IEEE 2011.

T. B. Cho and P. R. Gray, ‘A 10-bit, 20-MS/s, 35-mW pipeline A/D converter,’ in Proc. IEEE Custom Integrated Circuits Conf., May 1994, pp23.2.1-23.2.4.

Phillip E. Allen, Douglas R. Holberg, ‘CMOS Analog circuit Design, ‘second Edition Oxford University Press. Second Edition Oxford University Press.

Michael Nachtigal, and Nagarajan Ranganathan, Design and Analysis of a Novel Reversible Encoder/Decoder, 11th IEEE International Conference on Nanotechnology Portland Marriott, Portland, Oregon, USA, 2011.

R.jacob Baker, Harry W.Li, David E.Boyce, ‘CMOS Circuit Design layout and simulation,’ IEEE Press.

Patrick Quinn, Maxim Pribytko ‘Capacitor Matching Insensitive 12-bit 3.3MS/s Algorithmic ADC in 0.25pm CMOS’.

R.V.D Plassche, ‘CMOS Integrated Analog to Digital and digital to Analog converters’, 2nd edition: Kluwer Academic publisher, 2003.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.