Open Access Open Access  Restricted Access Subscription or Fee Access

Robust Fault Secure Data Transmission System for Nanomemory Applications

R. Aathi Lingam, M. Malathi, K. Sahayavinoliya

Abstract


Memory cells and supporting circuitry (encoder & decoder) have been protected from transient errors for more than a decade. Due to the increase in the transient error rate in logic circuits, the encoder and decoder circuitry around the memory blocks have become susceptible to transient errors as well and must also be protected .We introduce a new approach to design fault-secure encoder and decoder circuitry for memory designs. We introduce a nanowire-based, sublithographic memory architecture tolerant to transient faults. The key novel contribution of this project is identifying and defining a new class of error-correcting codes whose redundancy makes the design of fault-secure detectors (FSD) particularly simple. Both the storage elements and the supporting encoder and corrector are implemented in dense, nanowire based technology. We further quantify the importance of protecting encoder and decoder circuitry against transient errors. We explore scrubbing designs and show the overhead for serial error correction and periodic data scrubbing. We prove that Hamming codes have the fault-secure detector capability. Using some of the smaller Hamming codes, we can tolerate nanowire defect rates with nanowire pitch of 10 nm for memory blocks of 10 Mb or larger. Larger Hamming codes can achieve even higher reliability. We present a design which describes the error-correction coding and circuitry used for permanent defect and transient fault tolerance with the help of VHDL modeling.

Keywords


fault-secure detectors (FSD),FSD-ECC,error-correcting codes (ECCs).

Full Text:

PDF

References


ITRS, ―International technology roadmap for semiconductors,‖ 2005. [Online]. Available: http://www.itrs.net/Links/2005ITRS/ Home2005.htm

Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. S. Williams, ―Nanoscale molecular-switch crossbar circuits,‖ Nanotechnology, vol. 14, pp. 462–468, 2003.

Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olynick, and E. Anderson, ―Nanoscale molecular-switch devices fabricated by imprint lithography,‖ Appl. Phys. Lett., vol. 82, no. 10, pp. 1610–1612, 2003.

A. DeHon, ―Deterministic addressing of nanoscale devices assembled at sublithographic pitches,‖ IEEE Trans. Nanotechnol., vol. 4, no. 6,pp. 681–687, 2005.

A. DeHon, ―Nanowire-based programmable architectures,‖ ACM J.Emerging Technol. Comput. Syst., vol. 1, no. 2, pp. 109–162, 2005.

A. DeHon, S. C. Goldstein, P. J. Kuekes, and P. Lincoln, ―Non-photolithographic nanoscale memory density prospects,‖ IEEE Trans. Nanotechnol., vol. 4, no. 2, pp. 215–228, Feb. 2005.

A. DeHon and M. J. Wilson, ―Nanowire-based sublithographic programmable logic arrays,‖ in Proc. Int. Symp. Field-Program. Gate Arrays, Feb. 2004

M. Forshaw, R. Stadler, D. Crawley, and K. Nikolic´, ―A short review of nanoelectronic architectures,‖ Nanotechnology, vol. 15, pp. S220–S223, 2004.

R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston- Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart, and J. R. Heath, ―A 160-kilobit molecular electronic memory patterned at per square centimeter,‖ Nature, vol. 445, pp. 414–417, Jan. 25, 2007.

S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and C. Dai, ―Impact of CMOS process scaling and SOI on the soft error rates of logic processes,‖ in Proc. Symp. VLSI, 2001, pp. 73–74.

J. Kim and L. Kish, ―Error rate in current-controlled logic processors with shot noise,‖ Fluctuation Noise Lett., vol. 4, no. 1, pp. 83–86, 2004.

D. E. Knuth, The Art of Computer Programming, 2nd ed. Reading, MA: Addison Wesley, 2000.

Y. Kou, S. Lin, and M. P. C. Fossorier, ―Low-density parity-check codes based on finite geometries: A rediscovery and new results,‖ IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2711–2736, Jul. 2001.

S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2004.

R. J. McEliece, The Theory of Information and Coding. Cambridge, U.K.: Cambridge University Press, 2002.

H. Naeimi, ―A greedy algorithm for tolerating defective crosspoints in nanoPLA design,‖ M.S. thesis, Dept. Comput. Sci., California Inst. Technol., Pasadena, CA, Mar. 2005.

H. Naeimi, ―Reliable integration of terascale designs with nanoscale devices,‖ Ph.D. dissertation, Dept. Comput. Sci., California Inst. Technol., Pasadena, CA, Sep. 2007.

H. Naeimi and A. DeHon, ―Fault secure encoder and decoder for memory applications,‖ in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Syst., Sep. 2007, pp. 409–417.

H. Naeimi and A. DeHon, ―Fault-tolerant nano-memory with fault secure encoder and decoder,‖ presented at the Int. Conf. Nano-Netw., Catania, Sicily, Italy, Sep. 2007.

R.Aathilingam ―Robust fault secure data transmission system for nano memory applications‖.M.E.,Annauniversty.,presented at the Int. Conf at coimbatore.,jun2010.

M.Malathi and K.Sahayavinoliya ―Robust fault secure data transmission system for nano memory applications‖M.E.,Annauniversity., presented at the Int. Conf at coimbatore in Tamilnadu.,jun.2010.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.