Open Access Open Access  Restricted Access Subscription or Fee Access

Intuitionistic Fuzzy Cosmall Submodules

Poonam Kumar Sharma, Gagandeep Kaur


Let M be an R- module, A and B are intuitionistic fuzzy submodules of M with   A Í B. Then A is called an    intuitionistic fuzzy cosmall submodule of B in M if B / A << IF M /A (= W (M) / A*).  In this paper an attempt has been to study intuitionistic fuzzy cosmall submodules and investigate various properties of such intuitionistic fuzzy submodules. The notion of an intuitionistic fuzzy hollow module is also introduce and a relationship of this with the intuitionistic fuzzy indecomposable module and the factor module are established.


Intuitionistic Fuzzy Small (Essential) Submodule, Intuitionistic Fuzzy Indecomposable Module, Intuitionistic Fuzzy Cosmall Submodule.

Full Text:



Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.

Atanassov, K. T. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Series Studies on Fuzziness and Soft Computing, Vol. 35, Springer Physica-Verlag, Heidelberg.

Basnet D. K. (2002) Intuitionistic fuzzy essential submodule; Proceeding of the ‘International Symposium on Mathematics and Its Application’, pp. 113-124.

Biswas, R. (1989) Intuitionistic fuzzy subgroup, Mathematical Forum, X, 37–46.

Bland Paul, E. (2012) Rings and Their Modules, Deutsche National bibliothek, Germany.

Davvaz, B., Dudek, W.A and Jun Y.B (2006), Intuitionistic fuzzy Hv-submodules, Information Science, 176, 285-300.

Hur, K., Kang, H. W. & Song, H. K. (2003) Intuitionistic Fuzzy Subgroups and Subrings, Honam Math J., 25(1), 19–41.

Hur, K., Jang, S. Y. & Kang, H. W. (2005) Intuitionistic Fuzzy Ideals of a Ring, Journal of the Korea Society of Mathematical Education, Series B, 12(3), 193–209.

John, P. P. & Isaac, P. (2012) IFSM’s of an R-Module – A Study, International Mathematical Forum, 19(7), 935–943.

Rahman, S and Saikia, H. K. (2012) some aspects of Atanassov’s intuitionistic fuzzy submodules, Int. J. Pure and Appl. Mathematics, 77(3), 369–383.

Sharma, P. K. (2013) (, )-Cut of intuitionistic fuzzy modules–II, Int. J. of Mathematical Sciences and Applications, 3(1), 11–17.

Sharma, P.K. Kaur Gagandeep, (2016) Intuitionistic fuzzy superfluous submodule, Notes on Intuitionistic Fuzzy Sets, 22(3), 34-46.

Sharma, P. K. (2016) Reducibility and Complete Reducibility of intuitionistic fuzzy G-modules, Annals of Fuzzy Mathematics and Informatics, 11(6), 885-898.

Wisbaure, R. (1991) Foundations of Module and Ring Theory, Gordon and Breach: Phialdelphia.

Zadeh, L. A. (1965) Fuzzy sets, Inform. Control. 8, 338–353.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.