Open Access Open Access  Restricted Access Subscription or Fee Access

Fuzzy-Based Torque Ripple Optimization and Digitalized Sector Selection in DTC Scheme

D. Deenadayalan, I. Alexandarbeski, E. Balaji

Abstract


This paper presents an efficient method of torque ripple optimization in Direct Torque Control (DTC) scheme for an induction motor drive (IMD), where the optimization has been done by varying the bandwidth of the torque hysteresis comparator (band adaption) online using fuzzy controller and also here a simple Digital Logic Circuit (DLC) has been presented, which reduces the computation burden on the DSP to evaluate the sector number of the flux linkage space vector and so the proposed DTC scheme does not require any high speed/ high cost DSP in order to attain the fast and precise control. In order to test the performance of the proposed DTC scheme, a complete simulation model for both the conventional and proposed DTC are developed using MATLAB/Simulink.

Keywords


Induction Motor (IM) Drives, Direct Toque Control (DTC), Field-Oriented Control (FOC), Fuzzy Logic Controller (FLC), Digital Logic Gates, Torque and Flux Hysteresis Controller, Band Adaption, Torque Ripples

Full Text:

PDF

References


C. C. Chen, A. Bouscayrol, and K. Chen, ―Electric, hybrid, and fuel-cell vehicles: Architectures and modeling,‖ IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589–598, Feb. 2010.

F. Blaschke, ―A new method for structural decoupling of AC induction machines,‖ in Conf. Rec. IFAC, Duesseldorf, Germany, Oct. 1971, pp. 1–15.

I. Takahashi and T. Noguchi, ―A new quick-response and high-efficiency control strategy for an induction motor,‖ in Conf. Rec. IEEE IAS Annu. Meeting, 1985, pp. 495–502.

Y. Zhang and J. Zhu, ―Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency,‖IEEE Trans. Power Electron., vol. 26, no. 1, pp. 235–248, 2011.

D. Casadei, G. Serra, and A. Tani, ―Improvement of direct torque control performance by using a discrete svm technique,‖ in Proc. PESC 1998 Record Power Electron. Spec. Conf. 29th Annu. IEEE, May 17–22, vol. 2, pp. 997–1003.

G. S. Buja and M. P. Kazmierkowski, ―Direct torque control of PWM inverter-fed AC motors—A survey,‖ IEEE Trans. Ind. Electron., vol. 51,no. 4, pp. 744–757, Aug. 2004.

I. Takahashi and T. Nouguchi, ―A new quick response and high efficiency control strategy for an induction motor,‖ IEEE Trans. Ind. Appl., vol. IA- 22, no. 5, pp. 820–827, Sep. 1986.

C. F. Hu, R. B. Hong, and C. H. Liu, ―Stability analysis and PI controller tuning for a speed –sensorless vector-controlled induction motor drive‖, 30th Annual Conference of IEEE Inds. Elec., Society, 2004, IECON, vol. 1, 2-6 Nov. 2004, pp. 877-882, 2004

S. Kouro, R. Bernal, H. Miranda, C. A. Silva, and J. Rodriguez, ―Highperformance torque and flux control for multilevel inverter fed induction motors,‖ IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2116–2123, Nov. 2007.

R. D. Casadei and T. Angelo, ―Implementation of a direct torque control algorithm for induction motors based on discrete space vector modulation,‖ IEEE Trans. Power Electron., vol. 15, no. 4, pp. 769–777, July 2000 .

C.-T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Upper Saddle River, NJ: Prentice-Hall, 1996.

Y.-S. Lai and J.-C. Lin, ―New hybrid fuzzy controller for direct torque control induction motor drives,‖ IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1211–1219, Sep. 2003.

L. Youb and A. Craciunescu, ―Direct torque control of induction motors with fuzzy minimization torque ripple,‖ in Proc. WESCO, 2009, vol. 2, pp. 713–717.

A. F. Aimer, A. Bendiabdellah, A. Miloudi, and C. Mokhtar, ―Application of fuzzy logic for a ripple reduction strategy in DTC scheme of a PWM inverter fed induction motor drives,‖ J. Elect. Syst., Special Issue 1, pp. 13–17, Nov. 2009.

G. Sheng-wei and C. Yan, ―Research on torque ripple minimization strategy for direct torque control of induction motors,‖ in Proc. ICCASM, 2010, pp. VI-278–VI-281.

G. M. Gadoue, D. Giaouris, and J.W. Finch, ―Artificial intelligence-based speed control of DTC induction motor drives—A comparative study,‖ Elect. Power Syst. Res., vol. 79, no. 1, pp. 210–219, 2009.

R. Toufouti, S. Meziane, and H. Benalla, ―Direct torque control for induction motor using fuzzy logic,‖ ACSE J., vol. 6, no. 2, pp. 19–26, Jun. 2006.

F. Sheidaei, M. Sedighizadeh, S. H. Mohseni-Zonoozi, and Y. Alinejad-Beromi, ―A fuzzy logic direct torque control for induction motor sensorless drive,‖ in Proc. UPEC, 2007, pp. 197–202.

Y. V. S. Reddy, M. Vijayakumar, and T. Brahmananda Reddy, ―Direct torque control of induction motor using sophisticated lookup tables based on neural networks,‖ AIML J., vol. 7, no. 1, pp. 9–15, Jun 2007.

J.-K. Kang, D.-W. Chung, and S.-K. Sul, ―Direct torque control of induction machine with variable amplitude control of flux and torque hysteresis bands,‖ in Proc. IEMD, 1999, pp. 640–642.

P. Vas, Sensorless Vector and Direct Torque Control. London, U.K.: Oxford Univ. Press, 1998.

A. E. Fowkes, ―Hardware efficient algorithm for trigonometric functions,‖ IEEE Trans. Comput., vol. 42, no. 2, pp. 235–239, Feb. 1993.

H. F. Abdul Wahab and H. Sanusi, ―Simulink model of direct torque control of induction machine,‖ Amer. J. Appl. Sci., vol. 5, no. 8, pp. 1083– 1090, 2008.

A. M. Trzynadlowshi, The Field Orientation Principle in Control of Induction Motors. Norwell, MA: Kluwer, 1994.

D. Casadei, G. Grandi, G. Serra, and A. Tani, ―Effects of flux and torque hysteresis band amplitude in direct torque control of induction machines,‖ in Proc. IEEE IECON, 1994, vol. 1, pp. 299–304.

N. Rumzi, N. Idris, and A. H. M. Yatim, ―Direct torque control of induction motors with constant switching frequency and reduced torque ripple,‖ IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 758–767, Aug. 2004.

C. C. Lee, ―Fuzzy logic in control systems: Fuzzy logic controller—Part I,‖ IEEE Trans. Syst., Man, Cybern., vol. 20, no. 2, pp. 404–418,Mar./Apr. 1990.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.