Open Access Open Access  Restricted Access Subscription or Fee Access

Segmentation of Heart Blood Vessels

Dr. G. Wiselin Jiji

Abstract


The coronary arteries are essential for the proper functioning of the human heart. It is difficult to segment the volume datasets separately from blood-filled cavities of the heart. Main reason for this difficulty is the lack of sufficient spatial resolution and partial volume effects. In this paper, a method is presented to mark the coronary arteries by traversal. The algorithm starts with the extraction of vessel centerlines, which are used as guidelines for the subsequent vessel –filling phase. Then segmentation is obtained using an iterative region growing method that integrates the contents of several binary images resulting from vessel width morphological filters. Therefore an algorithm is proposed for segmenting blood vessels from MRI as the computer-aided analysis.


Keywords


Edge Detection, Morphological Processing, Ophthalmology, Vessel Segmentation, Medical Imaging

Full Text:

PDF

References


Mitchell SC, Korones SB, Berendes HW: Congenital heart disease in 56,109 births. Circulation 1971;43:323-32 .

Joyce L: Mended hearts grow up. Stanford Med 1994;11:18- 25.

Perloff JK: Overlooked congenital heart disease in the adults: Part 1. J Cardiovascular Med 1980;5:535-45

Glockner JF, Johnston DL, McGee KP: Evaluation of cardiac valvular disease with MR imaging: qualitative and quantitative techniques. Radiographics 2003;23(3):686-6 93

Wimpfheimer O, Boxt LM: MR Imaging of Adult patients with Congenital Heart Disease. Radiol Clin North Am 1998; 37:421-37.

American Heart Association, “A.H.A. Heart Disease and Stroke Statistics - 2006 Update”, (2006).

Kirbas C and Quek F, “A Review of Vessel Extraction Techniques and Algorithms”, ACM Comput. Surv. 36 (2) (2004), pp. 81-121

Y. Sun, “Automated identification of vessel contours in coronary arteriograms by an adptive tracking algorithm,” IEEE Trans. Med. Imag., vol. 8, no. 1, pp. 78–88, Mar. 1989.

K. A. Vermeer, F.M. Vos, H. G. Lemij, and A. M. Vossepoel, “A model based method for retinal blood vessel detection,” Comput. Biol. Med.,vol. 34, pp. 209–219, 2004.

Y. Hatanaka, H. Fujita, M. Aoyama, H. Uchida, and T. Yamamoto, “Automated analysis of the distribuitions and geometries of blood vessels on retinal fundus images,” Proc. SPIE Med. Imag. 2004: Image Process., vol. 5370, pp. 1621–1628, 2004.

K. A. Vermeer, F.M. Vos, H. G. Lemij, and A. M. Vossepoel, “A model based method for retinal blood vessel detection,” Comput. Biol. Med.,vol. 34, pp. 209–219, 2004.

S. Chaudhuri, S. Chateterjee, N. katz, M. Nelson, and M. Goldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Trans. Med. Imag., vol. 8, no. 3, pp. 263–269, Sep. 1989

T. Chanwimaluang and G. Fan, “An efficient algorithm for extraction of anatomical structures in retinal images,” in Proc. ICIP, 2003, pp.1193–1196

Sinthanayothin, J. F. Boyce, H. L. Cook, and T. H.Williamson, “Automated localization of the optic disc, fovea, and retinal blood vessels from digital colour fundus images,” Br. J. Ophthalmol., vol. 83, pp.902–911, 1999.

Pinz, S. Bernogger, P. Datlinger, and A. Kruger, “Mapping the human retina,” IEEE Trans. Med. Imag., vol. 17, no. 4, pp. 606–619, Aug. 1998.

M. E. Martinez-Perez, A. D. Hughes, A. V. Stanton, S. A. Thom, A.A. Bharath, and K. H. Parker, “Segmentation of retinal blood vessels based on the second directional derivative and region growing,” in Proc.ICIP, 1999, pp. 173–176.

M. E. Martinez-Perez, A. D. Hughes, A. V. Stanton, S. A. Thom, A. A.Bharath, and K. H. Parker, “Scale-space analysis for the characterization of retinal blood vessels,” in Medical Image Computing and Computer-Assisted Intervention— MICCAI’99, C. Taylor and A. Colchester,Eds. Springer: New York, 1999, vol. 16794, Lecture Notes Comput.Sci., pp. 90–97.

Y. Wang and S. C. Lee, “A fast method for automated detection of blood vessels in retinal images,” in IEEE Comput. Soc. Proc. Asilomar Conf., 1998, pp. 1700–1704

Jiang and D. Mojon, “Adaptive local thresholding by verificationbased multithreshold probing with application to vessel detection in retinal images,” IEEE Trans. Pattern Analy. Mach. Intell., vol. 254, no.1, pp. 131–137, Jan. 2003

Zana and J.-C. Klein, “Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation,” IEEE Trans.Med. Imag., vol. 11, no. 7, pp. 111–1119, Jul. 2001

M. Niemeijer, J. Staal, B. van Ginneken, M. Loog, and M. D.Abràmoff,“Comparative study of retinal vessel segmentation methods on a new publicly available database,” in Proc. SPIE Med. Imag., M. Fitzpatrick and M. Sonka, Eds., 2004, vol. 5370, pp. 648–656.

. L. Zhou, M. S. Rzeszotarski, L. J. Singerman, and J. M. Chokreff, “The detection and quantification of retinopathy using digital angiograms,” IEEE Trans. Med. Imag., vol. 13, no. 4, pp. 619–626, Dec. 1994

J. Frame, P. E. Undrill, J. A. Olson, K. C. McHardy, P. F. Sharp,and J. V. Forrester, “Structural analysis of retinal vessels,” in Proc.IPA, 1997, pp. 824–827.

Goa, A. Bharath, A. Stanton, A. Hughes, N. Chapman, and S. Thom, “A method of vessel tracking for vessel diameter measurement on retinal images,” in Proc. ICIP, 2001, pp. 881–884

Y. Tolias and S. M. Panas, “A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering,” IEEE Trans. Med. Imag., vol. 17, no. 2, pp. 263–273, Apr. 1998.

A.Can, H. Shen, J. N. Turner, H. L. Tanenbaum, and B. Roysam,“Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms,” IEEE Trans. Inf. Technol.Biomed., vol. 3, no. 2, pp. 125–138, Jun. 1999


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.