Open Access Open Access  Restricted Access Subscription or Fee Access

Modeling and Performance Comparison of Nanobiosensor for Automated Disease Detection

P. Vipeesh, Dr.N.J.R. Muniraj

Abstract


Automated disease detection and drug dosing is one of the most advanced emerging medical applications domain. With the advances in nanotechnology, nanobio sensors are being used to detect diseases. System level design and validation of automated disease detection unit is one of the challenging areas of study. In this paper, we develop a software based experimental setup for performance analysis of nanobio sensors for disease detection. Blood samples and fluids in human body are modeled using appropriate parameters and a mathematical model for nanobiosensor is developed. Performances of three nanobiosensors are analyzed and its properties are compared. Simulations of nanobiosensors are carried out using nanohub.org and Matlab. The results obtained are analyzed with simulation results in nanohub. The developed sensors are suitable for automated drug delivery unit.

Keywords


Nanobio Sensors, Disease Detection, Nanowire, Mathematical Modeling

Full Text:

PDF

References


Young, Kwak and Joon, Nanotechnology for early cancer detection, Journal of Sensors, (www.mdpi.com/journals/sensors), Sensors 2010, 10, 428-455.

Peng, G.; Tisch, U.; Haick, H. Detection of nonpolar molecules by means of carrier scattering in random networks of carbon nanotubes: toward diagnosis of diseases via breath samples. Nano Lett. 2009, 9, 1362-1368.

Hahm, J.; Lieber, C. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51-54.

Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017-14022.

Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.; Lieber, C. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294-1301.

Li, C.; Curreli, M.; Lin, H.; Lei, B.; Ishikawa, F.; Datar, R.; Cote, R.; Thompson, M.; Zhou, C. Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 12484-12485.

Cusmà, A.; Curulli, A.; Zane, D.; Kaciulis, S.; Padeletti, G. Feasibility of enzyme biosensors based on gold nanowires. Mater. Sci. Eng.: C 2007, 27, 1158-1161.

Basu, M.; Seggerson, S.; Henshaw, J.; Jiang, J.; del A Cordona, R.; Lefave, C.; Boyle, P.; Miller, A.; Pugia, M.; Basu, S. Nano-biosensor development for bacterial detection during human kidney infection: Use of glycoconjugate-specific antibody-bound gold nanowire arrays (GNWA), Glycoconj. Journal 2004, 487-496.

Fan, Y.; Chen, X.; Trigg, A.; Tung, C.; Kong, J.; Gao, Z. Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J. Am. Chem. Soc. 2007, 129, 5437-5443.

Cui, Y.; Wei, Q.; Park, H.; Lieber, C. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.

Zhang, R.; Lifshitz, Y.; Lee, S. Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 2003, 15, 635-640.

Almeida, V.; Barrios, C.; Panepucci, R.; Lipson, M. All-optical control of light on a silicon chip. Nature 2004, 431, 1081-1084.

Piscanec, S.; Cantoro, M.; Ferrari, A.; Zapien, J.; Lifshitz, Y.; Lee, S.; Hofmann, S.; J. Robertson, J. Raman spectroscopy of silicon nanowires. Phys. Rev. B 2003, 68, 241312-241315.

Zhang, S.; Rolfe, P.; Wright, G.; Lian, W.; Milling, A.; Tanaka, S.; Ishihara, K. Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylcholine head group. Biomaterials 1998, 19, 691-700.

Craighead, H.; Turner, S.; Davis, R.; James, C.; Perez, A.; St. John, P.; Isaacson, M.; Kam, L.; Shain, W.; Turner, J.; Banker, G. Chemical and topographical surface modification for control of central nervous system cell adhesion. Biomed. Microdev. 1998, 1, 49-64.

(a) Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Shi Kam, N. W.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4984. (b) Star, A.; Gabriel, J. P.; Bradley, K.; Gruner, G. Nano Lett. 2003, 3, 459. (c) Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, 3838. (d) Nguyen, C. V.; Delzeit, L.; Cassell, A. M.; Li, J.; Han, J.; Meyyappan, M. Nano Lett. 2002, 2, 1079.(e) Koehne, J. E.; Chen, H.; Cassell, A. M.; Ye, Q.; Han, J.; Meyyappan, M.; Li, J. Clin. Chem. 2004, 50, 1886.

(a) Patolsky, F.; Lieber, C. M. Mater. Today 2005, 8, 20. (b) Bunimovich,Y. L.; Ge, G.; Beverly, K. C.; Ries, R. S.; Hood, L.; Heath, J. R. Langmuir 2004, 20, 10630.

Sinha, Anderson and greenwald, cancer risk and diet in India, Symposium of postgraduate medicals, www.jpgmonline.com

Complementary Detection of Prostate-Specific Antigen Using In2O3 Nanowires and Carbon Nanotubes Chao Li, Marco Curreli, Henry Lin, Bo Lei, F. N. Ishikawa, Ram Datar, Richard J. Cote, Mark E. Thompson, and Chongwu Zhou


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.