Open Access Open Access  Restricted Access Subscription or Fee Access

A Design of Fault Detection for Steel Plates Using Data Mining Applications

P. Aravindan, Dr. M. Renuga Devi

Abstract


Fault Diagnosis (FD) has a major importance to enhance the quality of manufacturing and to lessen the cost of product testing. It keeps away from product quality problems and facilitates precautionary maintenance and pattern recognition problem. It has more attention to develop methods for improving the accuracy and efficiency of pattern recognition. Many computational tools and algorithms that have been recently developed could be used. This study evaluates the performances of three of the popular and effective data mining models to diagnose seven commonly occurring faults of the steel plate namely; Pastry, Z_Scratch, K_Scatch, Stains, Dirtiness, Bumps and other faults. The models include C5.0 decision tree (C5.0 DT) with boosting, Multi Perception Neural Network (MLPNN) with pruning and Logistic Regression (LR) with step forward. A training set of such patterns, the individual model learned how to differentiate a new case in the domain. The diagnosis performances of the proposed models are presented using statistical accuracy, specificity and sensitivity. The diagnostic accuracy of the C5.0 decision tree with boosting algorithm. Experimental results showed that data mining algorithms in general and decision trees in particular have the great impact of on the problem of steel plates fault diagnosis.


Keywords


Fault Diagnosis (FD), Logistic Regression (LR), Multi Perception Neural Network (MLPNN).

Full Text:

PDF

References


Berry, M.J.A. and G. Linoff, 1997. Data Mining Techniques: for Marketing, Sales and Customer Support. 1st Edn., Wiley, New York, ISBN-10: 0471179809 pp: 454.

Bewick, V., L. Cheek and J. Ball, 2005. Statistics review 14: Logistic regression. Crit Care 9: 112- 118. DOI: 10.1186/cc3045

Breiman, L., 1984. Classification and Regression Trees. 1st Edn., Wadsworth International Group, Belmont, ISBN-10: 0534980538 pp: 358.

Buscema, M., S. Terzi and W. Tastle, 2010. A new meta-classifier. Proceedings of the North AmericanFuzzy Inform Processing Society, Jul. 12-14, IEEE Xplore Press, Toronto, pp: 1-7. DOI:10.1109/NAFIPS.2010.5548298

Chaudhuri, B.B. and U. Bhattacharya, 2000. Efficient training and improved performance of multilayer perceptron in pattern classification. Neurocomputing, 34: 11-27. DOI: 10.1016/S0925-2312(00)00305-2

Dong, L., D. Xiao, Y. Liang and Y. Liu, 2008. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers. Elec. Power Syst. Res., 78: 129-136. DOI: 10.1016/J.EPSR.2006.12.013

Eslamloueyan, R., 2011. Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee–Eastman process. Applied Soft Comput., 11: 1407-1415. DOI: 10.1016/J.ASOC.2010.04.012

Faiz, J. and M. Ojaghi, 2009. Different indexes for eccentricity faults diagnosis in three-phase squirrelcageinduction motors: A review. Mechatronics, 19: 2-13. DOI: 10.1016/j.mechatronics.2008.07.004

Frank, A. and A. Asuncion, 2010. UCI machine learning repository Irvine. University of California. Haykin, S.S., 1994. Neural Networks: A Comprehensive Foundation. 1st Edn., Macmillan, New York, ISBN-10: 0023527617, pp: 696.

Haykin, S.S., 2009. Neural Networks and Learning Machines. 3rd Edition, Prentice Hall, New York, ISBN-10: 0131471392 pp: 906. Hung, C.P. and M.H. Wang, 2004. Diagnosis ofincipient faults in power transformers using CMACneural network approach. Elec. Power Syst. Res.,71: 235-244. DOI: 10.1016/j.epsr.2004.01.019

Lau, C.K., Y.S. Heng, M.A. Hussain and M.I.M. Nor, 2010. Fault diagnosis of the polypropyleneproduction process (UNIPOL PP) using ANFIS.ISA Trans., 49: 559-566. DOI:10.1016/j.isatra.2010.06.007

Leger, R.P., W.J. Garland and W.F.S. Poehlman, 1998.Fault detection and diagnosis using statisticalcontrol charts and artificial neural networks. Artif.Int. Eng., 12: 35-47. DOI: 10.1016/S0954-1810(96)00039-8

Lo, C.H., Y.K. Wong, A.B. Rad and K.M. Chow, 2002.Fusion of qualitative bond graph and geneticalgorithms: A fault diagnosis application. ISATrans., 41: 445-456. 10.1016/S0019-0578(07)60101-3

Loh, W.Y. and Y.S. Shih, 1997. Split selection methodsfor classification trees. Stat. Sinica, 7: 815-840.

Ma, J. and J. Jiang, 2011. Applications of faultdetection and diagnosis methods in nuclear powerplants: A review. ProgNucl. Energy, 53: 255-266.DOI: 10.1016/j.pnucene.2010.12.001

Maalouf, M., 2011. Logistic regression in data analysis:An overview. Int. J. Data Anal. Tech. Strategies, 3:281-299. DOI 10.1504/IJDATS.2011.041335

Maurya, M.R., R. Rengaswamy and V.venkatasubramanian, 2007. Fault diagnosis usingdynamic trend analysis: A review and recentdevelopments. Eng. Appli. Artif. Intell., 20: 133-146. DOI: 10.1016/j.engappai.2006.06.020

Nisbet, R., J. Elder and G. Miner, 2009. Handbook ofStatistical Analysis and Data Mining Applications.1st Edn., Academic Press, Burlington, ISBN-10:9786612168314 pp: 824.

Principe, J.C., N.R. Eulianoand and W.C. Lefebvre, 2000. Neural and Adaptive Systems: FundamentalsThrough Simulations. Wiley, New York, ISBN-10:0471351679 pp: 656.

Quinlan J.R., 1993. C4.5: Programs for MachineLearning. Morgan Kaufmann, San Francisco, ISBN-10: 1558602380 pp: 302.

Quinlan, J.R., 1986. Induction of decision trees.Machine Learn., 1: 81-106.DOI: 10.1007/BF00116251

Seng-Yi, S.D.L. and W.L. Chang, 2011. Application ofmulticlass support vector machines for fault diagnosis of field air defense gun. Expert Syst.Appli., 38: 6007-6013. DOI:10.1016/j.eswa.2010.11.020

Simani, S. and C. Fantuzzi, 2000. Fault diagnosis inpower plant using neural networks. Inform. Sci., 127: 125-136. DOI: 10.1016/S0020-0255(00)00034-7

Thimm, G. and E. Fiesler 1996. Neural networkpruning and pruning parameters. Proceedings ofthe 1st Workshop on Soft Computing, (WSC’ 96), Nagoya, Japan, pp: 1-2.

Venkatasubramanian, V., R. Rengaswamy, K. Yin andS.N. Kavuri, 2003b. A review of process faultdetection and diagnosis: Part I: Quantitative modelbasedmethods. Comp. Chem. Eng., 27: 293-311.DOI: 10.1016/S0098-1354(02)00160-6

Venkatasubramanian, V., R. Rengaswamy, S.N. Kavuriand K. Yin, 2003a. A Review of process faultdetection and diagnosis: Part III: Process historybased methods. Original Res. Article Comp.Chem. Eng., 27: 327-346. DOI: 10.1016/S0098-1354(02)00162-X

Zhang, Y. and J. Jiang, 2008. Bibliographical reviewon reconfigurable fault-tolerant control systems.Annual Rev. Control, 32: 229-252. DOI:10.1016/J.ARCONTROL.2008.03.008


Refbacks

  • There are currently no refbacks.